Lyapunov Inverse Iteration for Identifying Hopf Bifurcations in Models of Incompressible Flow

نویسندگان

  • Howard C. Elman
  • Karl Meerbergen
  • Alastair Spence
  • Minghao Wu
چکیده

The identification of instability in large-scale dynamical systems caused by Hopf bifurcation is difficult because of the problem of identifying the rightmost pair of complex eigenvalues of large sparse generalized eigenvalue problems. A new method developed in [Meerbergen and Spence, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 19821999] avoids this computation, instead performing an inverse iteration for a certain set of real eigenvalues and that requires the solution of a large-scale Lyapunov equation at each iteration. In this study, we refine the Lyapunov inverse iteration method to make it more robust and efficient, and we examine its performance on challenging test problems arising from fluid dynamics. Various implementation issues are discussed, including the use of inexact inner iterations and the impact of the choice of iterative solution for the Lyapunov equations, and the effect of eigenvalue distribution on performance. Numerical experiments demonstrate the robustness of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

Lyapunov Inverse Iteration for Stability Analysis using Computational Fluid Dynamics

The recently developed inexact Lyapunov inverse iteration method is presented for the analysis of aeroelastic and fluid stability problems with Hopf bifurcations when using computational fluid dynamics in the modelling. The idea is to take the Jacobian matrix and its derivative with respect to an independent parameter, both evaluated at an equilibrium point, to obtain estimates of the critical ...

متن کامل

Inverse Iteration for Purely Imaginary Eigenvalues with Application to the Detection of Hopf Bifurcations in Large-Scale Problems

The detection of a Hopf bifurcation in a large scale dynamical system that depends on a physical parameter often consists of computing the right-most eigenvalues of a sequence of large sparse eigenvalue problems. Guckenheimer et. al. (SINUM, 34, (1997) pp. 1-21) proposed a method that computes a value of the parameter that corresponds to a Hopf point without actually computing right-most eigenv...

متن کامل

A reflection on the implicitly restarted Arnoldi method for computing eigenvalues near a vertical line

In this article, we will study the link between a method for computing eigenvalues closest to the imaginary axis and the implicitly restarted Arnoldi method. The extension to eigenvalues closest to a vertical line is straightforward, by incorporating a shift. Without loss of generality we will restrict ourselves here to the imaginary axis. In a recent publication, Meerbergen and Spence discusse...

متن کامل

Efficient iterative algorithms for linear stability analysis of incompressible flows

Linear stability analysis of a dynamical system entails finding the rightmost eigenvalue for a series of eigenvalue problems. For large-scale systems, it is known that conventional iterative eigenvalue solvers are not reliable for computing this eigenvalue. A more robust method recently developed in Elman & Wu (2012) and Meerbergen & Spence (2010), Lyapunov inverse iteraiton, involves solving l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012